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Abstract

Historically, it has always been understood that the relaxation spectra of
linear viscoelastic materials are continuous. Nevertheless, because of their ease
of implementation computationally, delta function recovery methods have been
and continue to be important, even though they do not generate continuous
approximations. Derivative based recovery techniques were popular in the pre-
computer days because they engendered simple formulas for continuous relax-
ation spectra approximation and estimation. They also represent a practical
basis for continuous relaxation spectra estimation from oscillatory shear data.
Here, using local Fourier deconvolution, we give precise formulae which gener-
alize certain classical derivative based approximations to the relaxation spectra
of linear viscoelastic materials using oscillatory shear data. We also present
new formulae in this class. Finally we present a stable iterative algorithm, of
the type proposed by Gureyev, which circumvents the calculation of very high
order derivatives. The importance of the proposed derivative based approxima-
tions are that they are local and therefore are appropriate for the experimental
situation where the oscillatory shear data is only available for a finite range of
frequencies. Results are presented for both exact and experimental data.

Keywords: continuous relaxation spectrum, local Fourier deconvolution,
Schwarzl-Staverman sequences, Maclaurin sequences, Gureyev iteration.

1. Introduction

To characterize and compare viscoelastic materials, it is common practice to
use their relaxation time spectra, H, since estimates of these can be recovered
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from oscillatory shear measurements [1,2,3,4,5], as well as step-strain and step-
stress experiments [2]. The link between the spectra and measurements is the
relaxation modulus, G, which takes the form

G(t) = Ge +

∫

∞

0

exp(−t/τ)
H(τ)

τ
dτ = Ge +

∫

∞

0

exp(−ts)
H(1/s)

s
ds, (1.1)

where Ge = limt→∞ G(t) is a material constant which is zero for a viscoelastic
liquid and non-zero for a viscoelastic solid. Estimates of H are often modelled as
finite sums of Dirac delta functions, with the corresponding relaxation modulus
G being finite (general) Dirichlet series of decaying exponential functions with
positive coefficients [6,7]. However, this approach overlooks the facts that:

(a) In most oscillatory shear experiments, the measured stress-strain response
is of a highly interconnected and cross-linked network of polymer chains
[8] and not that of a simple network with minimal interconnectedness and
cross-linking that one associates with an H consisting of a finite sum of
Dirac delta functions. The corresponding form for G, as a sum of decaying
exponentials, may not capture the true decay of G at large times [9].

(b) Historically, it has always been understood that the relaxation spectra
of linear viscoelastic materials are continuous. This assumption can be
validated in various ways. Jaishankar and McKinley [9] conclude that, in
many situations, the storage and loss moduli have power law structures
and mention the use of continuous models/approximations for H. As
explained in Section 3, from a measure theory perspective, it is equally
appropriate to assume that, for real viscoelastic liquids and solids, H is a
continuous function of compact support as it is to assume that it is a sum
of point masses.

(c) Though the fading memory [10] of the relaxation modulus G can be
modelled using simpler relationships, it is common rheological practice
to choose a form for G that is a completely monotone function with G
assumed to be bounded in the neighbourhood of the origin. It there-
fore follows from Bernstein’s theorem [11,12] that, on [0,∞), s−1H(s−1)
must be a positive finite Borel measure. Within this class of measures,
the absolutely continuous ones imply that s−1H(s−1) is an L1 function
which is consistent with assuming that H is continuous with compact sup-
port on (0,∞). For continuous H, because the span of the point masses
(Dirac delta functions) is properly weak*-dense in the positive finite Borel
measures [13], the number of point masses required to approximate the
variable structure in H can often be quite large [6,7,9,14]. The problem-
atic nature of modelling G with a large sum of decaying exponentials is
discussed in Jaishankar and McKinley [9]

(d) Since not all completely monotone functions can be written as a finite
(general) Dirichlet series with positive coefficients, such estimates for H
may not, in some practical situations, be representative of the actual char-
acteristics of the viscoelastic material being studied.
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A quite detailed discussion about the practical limitations associated with ap-
proximating H by a sum of Dirac delta functions as well about the historical use
of continuous approximations for H can be found in Stadler and Bailly [1]. It
includes a discussion about the various merits and shortcomings of the different
strategies that have been utilized for locating the Dirac delta functions.

Such considerations lead naturally to the need to have algorithms for con-
structing continuous approximations to H. This has been recognized by Stadler
and Bailly [1] and Davies and Goulding [3]. In the Stadler and Bailly pa-
per, H is approximated by a piecewise cubic Hermite spline, a quadratically
smooth approximation. They propose and analyse an algorithm that allows
for the spline knots to be freely adjustable, in order to minimize the num-
ber of knots required to yield a functionally accurate recovery of the struc-
ture in the H under investigation. Their motivation and justification for using
spline approximations is that it avoids the explicit use of specific basis func-
tions, such as the two-mode log-normal function proposed by Honerkamp and
Weese [15]. In the Davies and Goulding paper (equation (3.7) in Section 3), H
is approximated by a sum of translated scaling functions (sometimes called ker-
nel functions) ϕσ,k(t), k = 1, 2, · · · ,K, located at appropriately chosen points
tk, k = 1, 2, · · · ,K,

hσ(t) =
K
∑

k=1

akϕσ,k(t) ≈ H(exp(−t)), ϕσ,k(t) = ϕ

(

t− tk
σ

)

, (1.2)

where ϕ denotes the chosen scaling function. Its potential advantage over the
traditional discrete spectrum approaches is that, for a judicious choice for the
scaling function, the number K of terms required to yield a good approximation
to H will tend to be quite small. This is especially so if the determination of the
locations of the tk, k = 1, 2, · · · ,K, and the scaling function are orchestrated
in an efficient manner.

The advantage in assuming that H is continuous is that the possibility arises
to use analytic methods and in particular, local methods, to construct approxi-
mation to H. An alternative to basis function approximation is the use of direct
differentiation of the observational data. Using analytic methods, Schwarzl and
Staverman [16], in 1952, were the first to introduce simple approximations based
on derivatives, for the recovery of H from measurements of G. The formulation
of these earlier derivative formulas can be explained in the following way. For
the chosen viscoelastic liquid, the starting point is a step-strain measurement
of the relaxation modulus G. Since the corresponding H is defined by equation
(1.1), τH(τ) can be determined as the inverse Laplace transform of G. There
are various ways in which this inversion can be performed [17,18].

As explained in Schwarzl and Staverman [16] the earlier methods proposed
by Alfrey, Ferry and colleagues, either implicitly or explicitly, exploited the
following inversion formula

τH(τ) = lim
n→∞

{(−1)nnn+1(n!)−1τ (n+1)G(n)(nτ)}, G(n)(z) =
dnG(z)

dzn
,

(1.3)
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The different formulae that they proposed corresponded to taking small values
of n in (1.3). As explained in Davies and Martin [17] (on page 6), the origin of
this formula can be traced back to Gelfand and Shilov who were motivated by
the idea of finding a transformation of exp(−ts) that produced an approximation
to a Dirac delta function which could be applied directly to a Laplace transform
equation. As mentioned in Davies and Martin, this formula was first published
by Widder in 1934, but in a context independent of numerical Laplace transform
inversion.

It is such endeavours that laid the foundation for the early popularity of
derivative based recovery, especially since they generated continuous approxi-
mations for H. They represent motivation for the algorithms to be proposed
below in that they correspond to the formulation and application of similar
derivative based procedures to oscillatory shear measurements for the recovery
of continuous approximations to H.

The paper has been organized in the following manner. Relevant aspects of
continuous versus discrete relaxation spectrum recovery are discussed in Section
2. The Fourier deconvolution framework is defined in Section 3. The approx-
imations and algorithms are defined, analysed and validated in Sections 4-7.
Conclusions are drawn in Section 8.

2. Continuous and discrete relaxation spectrum recovery

Before turning to the formulation of derivative recovery algorithms that can
be applied to oscillatory shear data to recover continuous approximations for
the relaxation spectrum H, the significance of the relaxation spectrum H being
a positive finite Borel measure will be discussed, together with the implications
of this for the construction of continuous approximations for H.

The relaxation modulus G is assumed to be completely monotone CM [19].
It therefore follows from Bernstein’s theorem [11] that the most general form
that the relaxation spectrum H can have is as a positive finite Borel measure
on [0,∞) such that s−1H(s−1) is integrable. On the basis of the Lebesgue
decomposition theorem [13], a general measure, µ, on [0,∞) can be written
uniquely as the sum

µ = µac + µs, µs = µd + µsc, (2.1)

where µac denotes an absolutely continuous measure, while µs denotes a singular
measure made up of a discrete measure µd and a singular continuous measure
µsc. From a measure theoretic perspective, it is necessary to draw a clear
distinction between µac and µs, as µs is zero outside a set of Lebesgue measure
zero, and µac is given by the (Lebesgue) integral of some L1 function.

The measure µd, a discrete positive measure on [0,∞)has the form

µd =
∞
∑

i=1

αiδτi , τi ∈ [0,∞), αi ≥ 0,
∞
∑

i=1

αi < ∞,
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where δτ denotes the unit point mass located at τ ∈ [0,∞). For theoretical
reasons, in measure theory, it is often necessary to draw a distinction between
discrete measures as above and the separated discrete measures that satisfy the
additional condition that, for each i, distance(τi; {τj : j ̸= i}) > 0. From a
rheological perspective, it is the separated discrete that are used, not the non-
separated discrete, when generating discrete approximations to H.

As already mentioned, the span of the point masses is weak*-dense in the
finite Borel measures. This is also true for continuous functions of compact
support. The consequences of this have already been discussed in items (b) and
(c) in the Introduction. In relation to the point masses, it follows, depending
on the topology, that the span of the decaying exponentials, SDecayExp, may
not necessarily be dense in the space of CM functions. It is known that the
denseness of SDecayExp holds for the pointwise and uniform topologies. For the
Lp topologies, it is only known that

SDecayExp ⊂ ((Lp ∪ {constant functions}) ∩ CM) for any p > 0.

Consequently, on both theoretical and practical grounds, such results sup-
port the view that continuous H should be approximated using the µac mea-
sures.

3. The oscillatory shear deconvolution framework

As explained and exploited in Davies and Goulding [3], the recovery of H(τ)
from measurements of the storage and loss moduli involves the solution of one
or both of the following Fredholm integral equations of the first kind:

G′(ω) = Ge +

∫

∞

0

ω2τ2

1 + ω2τ2
H(τ)

dτ

τ
, G′′(ω) =

∫

∞

0

ωτ

1 + ω2τ2
H(τ)

dτ

τ
. (3.1)

These equations can be reformulated in terms of a Fourier deconvolution prob-
lem: for given data g and known kernel k, solve the Fourier convolution integral
equation

g = k ∗ h, k ∗ h =

∫

∞

−∞

k(x− y)h(y)dy =

∫

∞

−∞

h(x− y)k(y)dy, (3.2)

for h. For viscoelastic liquids, on applying the following substitutions

h(x) = H(exp(−x)), g1(x) = 2G′(exp(x)), g2(x) = 2G′′(exp(x)), (3.3)

to the oscillatory shear equations (3.1), the corresponding counterparts of equa-
tion (3.2) become

g1(x) = [1 + tanh(x)] ∗ h(x), (3.4)

g2(x) = sech(x) ∗ h(x). (3.5)
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Upon differentiating (3.4), the solutions of these convolution equations may
be expressed as

h(t) = lim
ϵ→0

1

2π2

∫

∞

−∞

∫

∞

−∞

dg1(x)

dx
p−1 sinh(

π

2
p) exp(−1

2
ϵ2p2) exp(ip(t− x)))dpdx, (3.6)

h(t) = lim
ϵ→0

1

2π2

∫

∞

−∞

∫

∞

−∞

g2(x) cosh(
π

2
p) exp(−1

2
ϵ2p2) exp(ip(t− x)))dpdx, (3.7)

where

(i) the mollifier exp(− 1
2ϵ

2p2) has been introduced to ensure the convergence
of the inner integrals, and

(ii) it is assumed that the functions g1 and g2 have sufficient regularity to
ensure all limit operations are interchangeable.

In physical variables these equations represent the inversion formulae

H(τ−1) = lim
ϵ→0

1

π2

∫

∞

−∞

∫

∞

−∞

dG′(ω)

d lnω
p−1 sinh(

π

2
p) exp(−1

2
ϵ2p2) exp(−ip lnωτ)dpd lnω, (3.8)

H(τ−1) = lim
ϵ→0

1

π2

∫

∞

−∞

∫

∞

−∞

G′′(ω) cosh(
π

2
p) exp(−1

2
ϵ2p2) exp(−ip lnωτ)dpd lnω. (3.9)

On replacing the sinh and cosh terms by their Maclaurin expansions, per-
forming the double integration term by term and taking the limit ϵ → 0, the
following analytic expressions for H in terms of G′ or in terms of G′′ can be
derived:

H(ω−1) =
2

π

∞
∑

r=0

(−1)r
(π

2

)2r+1 1

(2r + 1)!

[

d2r+1G′(ω)

d(lnω)2r+1

]

, (3.10)

=
2

π

∞
∑

r=0

(−1)r
(π

2

)2r 1

(2r)!

[

d2rG′′(ω)

d(lnω)2r

]

. (3.11)

Although the above series appear to be new, the unpublished PhD thesis of
Al-Aidarous [20] contains similar results, derived using an operational method
based on repeated differentiation. The series could also be derived using the
more general (Fourier) deconvolution procedure given in Gureyev et al. [21].

Using the substitutions in (3.3), with x = lnω, the equations (3.10) and
(3.11) become

h(x) =
1

π

∞
∑

r=0

(−1)r
(π

2

)2r+1 1

(2r + 1)!

[

d2r+1g1(x)

dx2r+1

]

, (3.12)

=
1

π

∞
∑

r=0

(−1)r
(π

2

)2r 1

(2r)!

[

d2rg2(x)

dx2r

]

. (3.13)
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4. The Schwarzl-Staverman sequence and the Maclaurin sequence.

The first approximations to the continuous relaxation spectrum using deriva-
tives of the storage and loss moduli appeared in a classic paper of Schwarzl and
Staverman [22], a sequel to their 1952 paper. Their method of derivation was
based on intensity functions which lead to delta-sequences, i.e. sequences of
functions of decreasing width and increasing height which approach the Dirac
delta function in the limit. These ideas were pursued further by Tschoegl [23]
and developed within a more general framework by Friedrich [24].

Starting from the inversion formulae (3.8) and (3.9) it is possible to derive a
sequence of higher order approximations involving odd derivatives of the storage
modulus and even derivatives of the loss modulus which extend the method of
Schwarzl and Staverman to arbitrary order. Similar results are to be found
in Friedrich [24] in a more general algebraic setting. Our approach here leads
to a much simpler formulation of the results. In (3.8) and (3.9) we take the
infinite-product representations

sinh(
π

2
p) =

π

2
p

∞
∏

r=1

(

1 +
p2

(2r)2

)

, cosh(
π

2
p) =

∞
∏

r=1

(

1 +
p2

(2r − 1)2

)

, (4.1)

and consider their approximation by the polynomials obtained by expanding
the first n factors under the product sign in each case:

sinh(
π

2
p) ≈ π

2
p

n
∏

r=1

(

1 +
p2

(2r)2

)

=
π

2

n
∑

r=0

a
(n)
2r+1p

2r+1, (4.2)

cosh(
π

2
p) ≈

n
∏

r=1

(

1 +
p2

(2r − 1)2

)

=

n
∑

r=0

a
(n)
2r p2r. (4.3)

The coefficients a
(n)
0 and a

(n)
1 are equal to 1 for all n, while the coefficients

a
(n)
r , r = 2, ..., n depend on n, and are clearly positive and rational. Substituting

(4.2) and (4.3) into (3.8) and (3.9), respectively, and evaluating the integrals
term by term leads to the approximations

HSS
2n+1(ω

−1) =

n
∑

r=0

(−1)ra
(n)
2r+1

d2r+1G′(ω)

d(lnω)2r+1
, (4.4)

HSS
2n (ω−1) =

2

π

n
∑

r=0

(−1)ra
(n)
2r

d2rG′′(ω)

d(lnω)2r
. (4.5)
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The first few approximations in the sequence {HSS
n (τ)}∞n=0 are:

HSS
0 (τ) =

2

π
G′′(τ−1), (4.6)

HSS
1 (τ) = DG′(τ−1) , (4.7)

HSS
2 (τ) =

2

π
[G′′(τ−1)−D2G′′(τ−1)] , (4.8)

HSS
3 (τ) = DG′(τ−1)− 1

4
D3G′(τ−1), (4.9)

where D denotes the differential operator d/dlnω. The approximation (4.6)
is usually attributed to Fuoss and Kirkwood [8], while (4.7) - (4.9) were first
derived by Schwarzl and Staverman [22]. They did not derive formulae of order
higher than three in this sequence, but in recognition of their pioneering work
we shall refer to the sequence of approximations {HSS

n (τ)}∞n=0 as the Schwarzl-
Staverman (SS) sequence.

From the independent perspective of derivative spectroscopy [25], the deriva-
tive terms can be viewed as recovering information about the changing structure
in H that is hidden in the oscillatory shear data. Given exact data, it may be
shown that

(A) the accuracy of each approximation increases with n;

(B) every approximation in the sequence satisfies the glassy modulus con-
straint

∫

∞

−∞

H(τ)d ln τ =
2

π

∫

∞

−∞

G′′(ω)d lnω = G′(∞), (4.10)

which holds for the exact spectrum H;

(C) the sequence is a sequence of positive functions [20].

Another sequence, of a different form to the SS-sequence, can be obtained
by truncating the infinite series (3.10) and (3.11). We refer to this new se-
quence, {HM

n (τ)}∞n=0, whose entries are given by the following formulae, as the
Maclaurin sequence or M-sequence:

HM
2n+1(ω

−1) =
2

π

n
∑

r=0

(−1)r
(π

2

)2r+1 1

(2r + 1)!

[

d2r+1G′(ω)

d(lnω)2r+1

]

, (4.11)

HM
2n(ω

−1) =
2

π

n
∑

r=0

(−1)r
(π

2

)2r 1

(2r)!

[

d2rG′′(ω)

d(lnω)2r

]

. (4.12)

The approximations in the SS-sequence and the M-sequence have the same
zeroth and first order coefficients, but the higher-order coefficients are different.
The coefficients under the summation sign in the M-sequence are no longer
rational, but are rational multiples of powers of π. The properties (A) and
(B) which hold for the SS-sequence also hold for the M-sequence, but low-order
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approximations in the M-sequence may display small negative lobes. The size
of these lobes diminish quite quickly with increasing n. We shall return to this
point later.

We shall demonstrate in the following section that the M-sequence converges
much faster than the SS-sequence. It can take derivatives of order twelve in the
SS-sequence to give the same accuracy as given by derivatives of fourth order
in the M-sequence.

5. Comparison of SS- and M-sequences

In this section we compare the convergence of the SS- and M-sequences. Due
to the property (A) shared by both sequences it will be sufficient to compare
the even-order subsequences (4.5) and (4.12). Schwarzl and Staverman [22]
used a single delta-function test spectrum to facilitate comparison of different
approximations. However, since the delta-function is a point mass, and the
approximations in the SS-sequence are continuous, they were unable to make
precise quantitative comparisons. We choose instead a continuous test spectrum
which is the unimodal function

H(τ) =
2τ2

1 + τ4
. (5.1)

The corresponding storage and loss moduli are given by

G′(ω) =
2ω2

1 + ω4
(
π

4
ω2 − lnω), G′′(ω) =

π√
2

ω

1 + ω4
(1−

√
2ω + ω2). (5.2)

The spectrum is of unit height with a maximum at τ = 1. The corresponding
functions h(x), g1(x) and g2(x), defined by the substitutions (3.3), are given by

h(x) = sech(2x), (5.3)

g1(x) =
π

2
[1 + tanh(2x)]− 2xsech(2x), (5.4)

g2(x) = πsech(2x)
[√

2 cosh(x)− 1
]

. (5.5)

The function h(x) is symmetric with its maximum at x = 0. For the purposes
of comparison, all differentiations are carried out exactly using MAPLE 17. We
adopt the notation hSS

n (x) to denote HSS
n (e−x) and hM

n (x) to denote HM
n (e−x).

In Figure 1, the zeroth, second-order and fourth-order approximations
to h(x) in the SS-sequence are shown, together with the exact spectrum for
comparison. The function h(x) is shown in black, and hSS

0 (x) , hSS
2 (x) and

hSS
4 (x) are shown in green, blue and red, respectively. The convergence of the

sequence to the true spectrum is slow, with the fourth-order approximation
achieving a peak-height of only 75%.
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Figure 1: h(x) ( ), hSS
0

(x) ( ), hSS
2

(x) ( ), hSS
4

(x) ( ).

In Figure 2, the zeroth, second-order and fourth-order approximations
to h(x) in the M-sequence are shown, using the same colour scheme. The
second-order approximation hM

2 (x) has negative lobes of magnitude 0.5% of its
peak height. For the test spectrum under consideration, all M-approximations
higher than second-order are positive. The fourth-order approximation hM

4 (x)
achieves a peak-height of 87%. In the SS-sequence it takes a twelfth-order
approximation hSS

12 (x) to reach a peak-height of 86%.

Figure 3 shows the sixth-order approximations in both sequences, with
hM
6 (x) shown in red. The approximation hM

6 (x) is clearly much superior,
achieving a peak-height of 94%.

6. Gureyev iteration

Stable methods for the numerical differentation of observational data can be
found in the papers by Anderssen, de Hoog and Hegland [26,27,28]. However, in
practice, working with experimental data, it would be prohibitively challenging
to employ derivative-based formulae of order higher than 2 or 3. It is clear that
the M-sequence and the SS-sequence, regardless of their mathematical elegance,
are not practicable when working with experimental data, due to the high orders
of differentiation required to provide sufficient accuracy in the recovery of the
spectrum. We must therefore find a way of capturing the structure of the
spectrum hidden in the higher derivatives without direct computation of these
derivatives.
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Figure 2: h(x) ( ), hM
0

(x) ( ), hM
2

(x) ( ), hM
4

(x) ( ).

To achieve this we adapt an iterative technique originally proposed by
Gureyev [21]. When recovering the spectrum from the loss modulus, this in-
volves repeated application of the second-order differential operator in the M-
sequence. This process effectively replaces high-order derivatives of the data by
a sequence of convolutions involving second order derivatives of the sech-kernel.

We take the second order differential operator L = 1
π
− π

8D
2 , defined by the

approximation
hM
2 (x) = Lg2(x), (6.1)

and apply the Gureyev iteration

hM
2,0(x) = hM

2 (x); (6.2)

hM
2,k(x) = hM

2,k−1(x) + L
[

g2(x)− sech(x) ∗ hM
2,k−1(x)

]

, k = 1, 2, ... . (6.3)

The great advantage of this approach is that we may use the identity

L [sech(x) ∗ h(x)] = [Lsech(x)] ∗ h(x) (6.4)

to replace high-order derivatives of the data by a sequence of convolutions with
the function Lsech(x). This function may be evaluated exactly, and acts as a
smoothing operator under convolution. In consequence, the iterations are stable
in the presence of experimental noise. The convergence of the Gureyev iteration
is much less rapid than the convergence of the M-sequence. Fortunately, this
is no great setback since each iteration in (6.3) may be performed very quickly,
with 100 iterations being achievable in about 1 second on a modest computer.
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Figure 3: h(x) ( ), hSS
6

(x) ( ), hM
6

(x) ( ).

Applying this iteration to the M-approximation hM
2 (x), the negative lobes

are removed after only a few iterations, and a recovery of the positive test spec-
trum to a peak-height of 98% is achieved in 48 iterations. The approximation
hM
2,48(x) is shown in red in Figure 4, and the initial estimate hM

2 (x) is shown in
blue.

To recover the spectrum from the storage modulus we must start from the
third-order approximation in the M-sequence. We take the differential operator

K = 1
2 − π2

48D
2 , defined by the approximation

hM
3 (x) = K

dg1(x)

dx
, (6.5)

and apply the Gureyev iteration

hM
3,0(x) = hM

3 (x); (6.6)

hM
3,k(x) = hM

3,k−1(x) +K

[

dg1(x)

dx
− sech2(x) ∗ hM

3,k−1(x)

]

, k = 1, 2, ... . (6.7)

We again use the identity

K
[

sech2(x) ∗ h(x)
]

=
[

Ksech2(x)
]

∗ h(x) (6.8)

to circumvent repeated differentiation of the data.
Starting from the third-order approximation (6.6), the iteration defined by

(6.7) recovers the spectrum to a peak height of 98% after only 17 iterations. It

12



Figure 4: Spectrum recovery from the loss modulus using Gureyev iteration. h(x) ( ), hM
2

(x)
( ), hM

2,48(x) ( ).

obtains the same accuracy as the iteration defined by (6.3) in fewer iterations
(17 rather than 48) since the starting point is a better approximation than the
second-order approximation given by (6.2). The results are shown in Figure 5.
The two recovered spectra shown in red in Figures 4 and 5 differ by less than
0.1% of their peak height.

7. Working with experimental data

The problem of recovering the relaxation spectrum from dynamic data is
well-known to be ill-posed. Ill-posed inverse problems abound in the natural
sciences, and fall into one of three categories: mildly ill-posed, moderately ill-
posed, and severely ill-posed. Davies and Goulding [3] show that the deconvo-
lution problems described by equations (3.4) and (3.5) are in fact exponentially
ill-posed. Consequently they fall into the severe category.

Working with experimental data, which are naturally discrete, noisy, and
confined to a limited frequency range, poses far greater challenges than those
encountered in earlier sections where we have worked with exact data over the
full frequency range. In this section we use experimental data published by
Honerkamp and Weese [29] for a polybutadiene blend, which we refer to as
PBD1. This choice of data enables us to compare results generated by our
derivative-based algorithms with published results obtained by other methods.

For ease of reference, we call the scheme of iterations given by equations
(6.2)-(6.3) the loss algorithm, and the scheme of iterations given by equations
(6.6)-(6.7) the storage algorithm. The loss algorithm generates a spectrum from
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Figure 5: Spectrum recovery from the storage modulus using Gureyev iteration. h(x) ( ),
hM
3

(x) ( ), hM
3,17(x) ( ).

G′′-data alone, whereas the storage algorithm determines a spectrum from G′-
data alone. Since the experimental data in themselves cannot be expected to
satisfy the Kramers-Kronig relations

G′(ω) = G′

∞
− 2

π
PV

∫

∞

0

ω1G
′′(ω1)

ω2
1 − ω2

dω1, (7.1)

G′′(ω) =
2

π
PV

∫

∞

0

ωG′(ω1)

ω2
1 − ω2

dω1, (7.2)

the spectra generated by each algorithm will be different. We shall show that
it is possible to combine the two estimates to best effect.

The experimental PBD1-data is shown in Figure 6, together with two under-
lying analytic curves which are generated for the purpose of providing estimates
of derivatives up to order 2 in the case of G′′ and order 3 in the case of G′.
There are only 17 frequency values, spanning less than 3 decades. These values
are in the range 2.413s−1 < ω < 1114s−1, or 0.91 < lnω < 7.02. The central
frequency value is ω0 = 52.18s−1.

The analytic G′′-curve is generated as follows. The full log-frequency range
−∞ < lnω < ∞ is shrunk onto the finite interval −1 < y < 1 using the map

y = tanh

[

λ ln(
ω

ω0
)

]

, (7.3)

where λ is an adjustable parameter which controls the smoothness of the higher
derivatives of both G′′ and G′. A suitable value of λ will depend on the data
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Figure 6: The PBD1 data and their analytic representations: G′′ (� � �). G′ (� � �). Horizontal
axis: w = lnω.

.

set under consideration. For the PBD1 data the value λ = 0.3 is chosen. In the
y-variable, G′′ is given the representation

G′′(ω) =
m
∑

r=0

arαr(y), (7.4)

where
αr(y) = (1 + y)r(1− y2)2, (7.5)

and the m+ 1 coefficients ar are determined by fitting (7.4) to the G′′-data by
weighted least-squares regression. The basis functions (7.5) are chosen to give
realistic asymptotics for G′′ in the limit of low and high frequencies. In terms
of lnω the G′′-curve is a sum of powers of hyperbolic functions. The G′′-curve
in Figure 6 corresponds to a value of m = 6, and the goodness-of-fit is marked
by a root-mean-square (RMS) error of 1%.

The G′-curve is generated in a similar way. G′ is given the representation

G′(ω) =
m
∑

r=0

brβr(y), (7.6)

where

βr(y) =

∫ y

s=−1

αr(s)ds. (7.7)

Again, the m + 1 coefficients br are determined from the G′-data by weighted
least-squares regression, but with one important constraint. An estimate of

15



Figure 7: Results for PBD1 from the loss algorithm. Left: Initial estimate for the spectrum
( ). Converged spectrum after 20 iterations ( ). Horizontal axis: ln τ . Right: Experimental
G′′ (� � �). G′′ obtained from the spectrum ( ). Experimental G′ (� � �). G′ obtained from the
spectrum ( ). Horizontal axis: lnω.

.

the limiting modulus, G′

∞
, must be included in the regression. Without this

additional constraint, the G′-curve will not be Kramers-Kronig compatible with
the G′′-curve. Consequently the G′′ data generated from the spectrum obtained
by the storage algorithm will not coincide with the experimental G′′ values over
their full measured range.

To circumvent this problem the G′′-curve is calculated first and the limiting
modulus estimated from the formula

G′

∞
=

2

π

∫

∞

−∞

G′′(ω)d lnω. (7.8)

The G′-curve shown in Figure 6 corresponds to a value of m = 6 in equation
(7.6), and carries an RMS error of 1.2%. The limiting modulus estimate is
G′

∞
= 1.2× 106.
We first implement the loss algorithm, using the G′′-curve in Figure 6 to ob-

tain the second derivative of G′′ required. The initial estimate for the spectrum
is obtained from equations (6.1)-(6.2) using the substitution g2(x) = G′′(ex),
and is depicted by the red curve on the left of Figure 7. Only 20 iterations are
required for numerical convergence to the spectrum shown in black on the left
of Figure 7. The first 10 iterations deliver a spectrum with a small negative
end-lobe. For the final 10 iterations the support of the spectrum is restricted to
that interval for which the spectrum in iteration 10 is positive. This is sufficient
to deliver the positive spectrum shown.

On the right of Figure 7 is shown the G′- and G′′-curves reproduced from
the converged spectrum using equations (3.4) and (3.5), respectively. These
curves satisfy the Kramers-Kronig relations to within machine precision since
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Figure 8: Results for PBD1 from the storage algorithm. Left: Initial estimate for the spectrum
( ). Converged spectrum after 10 iterations ( ). Horizontal axis: ln τ . Right: Experimental
G′′ (� � �). G′′ obtained from the spectrum ( ). Experimental G′ (� � �). G′ obtained from the
spectrum ( ). Horizontal axis: lnω.

.

they are generated from the same spectrum. They are plotted together with
the experimental data. The RMS error of fit to the G′′-data is 1.7%, whereas
the RMS error of fit to the G′-data is 3.0%. The higher error in the latter case
is due to the fact that only G′′-data is used by the loss algorithm to generate
the spectrum.

We next implement the storage algorithm, using the G′-curve in Figure 6 to
obtain the first and third derivatives of G′ required. The initial estimate for the
spectrum is obtained from equations (6.5)-(6.6) using the substitution g1(x) =
G′(ex), and is depicted by the red curve on the left of Figure 8. Numerical
convergence to the spectrum shown in black on the left of Figure 8 is obtained
after 10 iterations. This spectrum has a small negative region in its central dip,
and is therefore not acceptable. Nevertheless, a much improved result may be
found by combining the two spectra in Figures 7 and 8, thereby making use of
both G′- and G′′-data.

A straight average (50% weighting in each case) of the two spectra produce
the positive spectrum shown on the left of Figure 9. The G′- and G′′-curves
on the right of Figure 9 are generated from the combined spectrum, and again
satisfy the Kramers-Kronig relations to within machine precision. The RMS
error of fit to the G′′-data is 1.7%, whereas the RMS error of fit to the G′-data
is reduced to 1.8%. The reduced error in the latter case is due to the fact that
both G′- and G′′-data are used to generate the combined spectrum.

The combined spectrum obtained in Figure 9 is superior to that found by
Tikhonov regularization (see Figure 17 of Ref [3]). The combined spectrum is
also very similar to that found for PBD1 by the method of wavelet regularization
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Figure 9: Results for PBD1 from the combined spectrum. Left: The combined spectrum ( ).
Horizontal axis: ln τ . Right: Experimental G′′ (� � �). G′′ obtained from the spectrum ( ).
Experimental G′ (� � �). G′ obtained from the spectrum ( ). Horizontal axis: lnω.

.

in Figure 16 of Ref [3]. If the criterion of overall RMS error in reproducing the
G′- and G′′-data is used for the purpose of comparison, then the results in
Figure 9 show an overall RMS error of 1.75% while those obtained by wavelet
regularization show an overall RMS error of 1.8%. The improvement is hardly
significant, but what is significant is the simplicity of the algorithms used to
generate the results in the current paper compared with the method of wavelet
regularization. It is clear from Ref [3] that the choice of scale, vital to the
success of wavelet regularization, is a non-trivial exercise.

8. Conclusions

The topic of higher derivative approximations for recovery of the continuous
relaxation spectrum goes back several decades to pre-computer days. In this
paper we have revisited some of the early ideas and developed them further in
a modern context. In particular, the complete Schwarzl-Staverman sequence
for recovering the spectrum from derivatives of the dynamic data has been ex-
pressed in a simple format and compared with a new sequence derived from
Maclaurin series. Although the Schwarzl-Staverman sequence has inbuilt pos-
itivity of the spectrum guaranteed, at least when working with high quality
data, we have demonstrated that this sequence converges very slowly compared
with the Maclaurin sequence. This is easily explained by comparing the rate of
convergence of the infinite products (4.1) with their corresponding Maclaurin
expansions. The fact that positivity is not an inbuilt property of the Maclau-
rin sequence is not a setback. Small negative lobes, which can appear in very
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low-order Maclaurin approximations, disappear once higher order terms are in-
cluded, provided that the true spectrum is smooth.

It has been demonstrated that higher derivatives of order 6 and above are
needed to achieve accurate recovery of the spectrum. This is not practicable
when working with experimental data, and consequently algorithms which cir-
cumvent the computation of derivatives higher than order 2 or 3 are needed. We
have advocated the use of Gureyev iteration, which replaces high-order differ-
entiation with a sequence of well-defined convolutions, and we have shown that
this algorithm is capable of approximating the spectrum with high accuracy in
the case of exact data.

Spectrum approximations are computable from both of the moduli G′ and
G′′ separately. When working with experimental data, this leads to different
estimates of the spectrum. In Section 7 it has been demonstrated that these
two estimates can be combined to advantage. This is consistent with the
experience reported by others, that, when determining relaxation spectra from
experimental data, using both G′- and G′′-data leads to better results than
working with G′- and G′′-data separately.
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